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ABSTRACT

In this study a control system for a coupled-core one delayed
neukron group point reactor model with linear independent temperature
reactivity feedback and a quadratic controller is designed and analyzed
using a state varijable feedback design techniquel. The problem is for-
mulated in matrix notation, therefore, retaining the generality of the
method. The desired system dynamics are specified in terms of the closed
loop transfer function. TFor the casé in point the desired response is
characterized by second order dynamics with a damping ratio of .707 and
a zero velocity error response to a ramp power demand input. Simulation
studies using a digital time response program based on the 4th order
Runge~Kutta method, show that the desired system dynamics are exactly
realized by feeding back all the state variables through constant gain
elements.

The control system design based on the linearized model was
applied to the non-linear problem. Simulation studies show that the
desired system dynamics are obtained for step demands in power up to
35% of the equilibrium value. For perturbations up to 507 of equilibrium
value there is only a slight change in the system dynamics. Further, the
step response to negative inputs is more heavily damped than for corres~
ponding positive inputs. The step response becomes more oscillatory as
the equilibrium power is increased beyond the design value and more damped
as the power level is decreased below the design value. Parameter varia-

tion effects on the desired response is also considered.

iii



state variable feedback control to the design of a control system for a

The purpose of this work is to investigate the applicability of

CHAPTER I

PHYSICAL REACTOR MODEL

coupled core one delayed neutron group point reactor model with linear

independent temperature reactivity feedback.

considered congists of identical reactors operating at the same power

level, with parameter values indicative of the Kiwi-type reactors being

developed for space propulsion.2

The system is described by the following set of generalized differ-

ential equations:

wltere

1)

2)

3)

4)

p,~B D141 1(1-1)

gi = ( i ) my + ey + Dy 7 - 51 +Dy, T - Gi’
1 (i+1) (i-1)

Q B _
¢y = G my — Moy

i
Q
Ty = Kyny - a7y,
pi &= pie = aiTi’ 1= 1,2

neutron density or power in the ith core;
th
total reactivity in the i core;
total delayed neutron fraction;
neutron generation time;
effective delayed neutron precursor decay constant;

delayed neutron precursor concentration in the ith core;

In this study the system to be



and dotted

= temperature in the ithcore;

= preciprocal heat capacity of the ith core;

= reciprocal time constant for heat loss from the ith core;

= temperature coefficient of reactivity for ith core;

= coupling coafficiené which glves the reactivity contribution
to core Z due to neutron leakage from core 13

= coupling coefficient which gives the reactivity contribu-~
tion to core 1 due to neutron leakage fromcore 2;

= externally applied reactivity; Pra = 0 since only one core
is being controlled;

= Kronecker delta; Gi = {2

variables (3) indicates the time derivative C%%O of that wvariable,



CHAPTER 1I

LINEARIZED MODEL

Before the state variable feedback control design technique
can be applied, the system equations must be linearized. This is accom-
plished by taking small perturbations about a steady state equilibrium wvalue.

Following this procedure Eqs. 1 to 4 become

0 Pyo * S0y - B
5) 6ni S ¢ 21 )(niO +5ni) + Ai (cio + 6ci) +
1

D.,,8 D
2171 11 2

4 = (n + 8n,, ) + ——=——— 8 (n,. + &n )

-1)0 -

%341y (GHDO (i+1) fe4-1y 1 (1-1) (1-1)

9 B
6) 6ci 7 (niO + Gni) —,Ai(cio + 6ci)

i
° .
) &y =K (ng+n) - a, (T, + 6T,)
8) Pio” 8p; = Pyt Spy, 0y (Tyy + 8T i=1,2

where subscript O signifies the steady state value of the variable and §
denotes a small perturbation about the steady state value. In the steady

state, Egs. 1 to 4 reduce to

1
Py — B D,.8 D
10 2174 1i 2
9) 0“("“""“"“‘"‘)1‘1 +7\.C F m————— +o—— 8%
% 10 i"10 Legpry GHDO T 2oy gy i (i-1)0

10) 0 = b n,. - A,C

11) 0 =K,n,, -~ a,T



12040 P1e0 ™ %1710 L & e

Combining Egs. 9-10 gives

1
Oan D § D
‘ 10 24 "1 14 .2
13) W"‘f“*‘”n“‘i-mn 4 ——= § n._
%i 10 £(1+l) (i+1)0 21 i " (i-1)0

where a value for p,, can be found.

For core 1, i=1, Eg. 13 becomes

and for core 2 , i=2, Eq. 13 reduces to

200 . P12”10
. YT
2 1

15) 0 =

Since both cores are identical and operating at the same power level,
Egqs. 14 and 15 reduce to

16) p,, = ~-D=-D _ = -D

10 12 21
Substituting the relationships derived 1in Egqs. 9 and 16 into Eq. 5

and neglecting the nonlinear term ( 6piﬁni), Eq. 5 becomes

. D+ 8 ' 21 1
17) &R, = - én, + A,8¢, + 8§, dn,, +
i % R O T PRI S €
D n
+'E“LL"' 6? s 41y + Eig 60,
(1-1) i

gnd 4n the same manner using Eqs. 10 to 13, Egqs. 6 to 8 become

A 2 B -
18) 6ci zi 6ni Ai 6ci

0
19) &Ti = KiSni - aiSTi



20) Bpi = Snie - aiGTi i=1,2

Equations 17 through 20 represent the linearized coupled core
one delayed neutron group point reactor model with linear independent
Eémp@ratum@ reactivity feedback.

In order to complete the linear model, the controller dynamics must
be included. External reactivity, P is applied to the system by the
controller through control rod movement and/or reflector rotation. In this

investigation it is assumed that the controller transfer function is of

the form

K 32

u(s) &% + 28w s + w2 sZ + 8s + 32

21)

where
K is the gain,
£ igs the damping ratio (.707) of servo system,
f = mnlﬁm is the undamped natural resonant frequency (.9) of
servo system, cycles/sec.
u 18 the control

# is the Laplace transform variable

& quadratic controller was chosen because it is a good approx-
imation to some @f the practical servo systems now employed in reactor
control systems. Further a quadratic form of this type will in general
closely approximate the behavior of most physical equipment (electric
motor, hWpdraulic system, etc.) which might be utilized to drive a control

vod af tptate a reflector.



In order to apply the state variable feedback concept, Eq. 21
must be written as a gset of first-order differential equations. This can
easily be accomplished by writing Eq. 21 in differential equation form

¥

, "
22y é;% + 8&9@ + 32 ﬁ%fw 32 u,

Using phase variable.

ation, Bq. 22 is put in the form

P - g
23) Sp_ =%y

and

o
24) Xy = - 32 ﬁpe =~ 8 Xg 4+ 32 u,



CHAPTER III

STATE VARIABLE FEEDBACK CONTROL

In applying the state wariable concept to the design of a linear
cohtrol system, the differential eguations of the system are represented
by a set of first-order veetor-matrix differential equations of the form

25) £ () = A x (£) + bu (t)

26) y (t) = ¢ x(t)

where

(t) is an n~dimensional state vector

{hd

j=

is an n by n system matrix

jo*

is an n dimensional control vector

3

is the order of the system
¢ is the vecter output
y{t) is the scalar system output
The superseript T gdenotes the transpose of the column vector and the
dotted variables signify the time derivative of that variable.

When all the state variables are fed back through constant gain

frequency independent elements, hi’ the control function, u, becomes

T

27) w(r) = r(t) + b x(r)

where
w{t) &s the scalar control,
It s @n n—dimensional vector which has as its elements the state

variable feedback coefficients,

r{t} is an input variable.



Taking the Laplace transform of Egs. 25 to 27,

28) sx(s)

i

A x(s8) + b u(s),

29) y(s) =c x(s),

i

30) u(s) =h' xs) + x(s)
and substituting Eqs. 29-30 into Eq. 28, the closed-loop system
transfer function is specified in terms of h,

3D

where I is the identity matrix and the superscript, -1, indicates the
inverse of the matrix.

Eq. 31 is written im more compact form by letting

32) (s 1 ~-A~bh)=F
and

33) [Fl1 ™ =

where

¥ are ‘the cofactors of the elements, fij’ of the matrix, F

13
dat F is the determinant of P,

The closed-~loop system transfer function now becomes

T T
34y ¥88) , &'[Fiilh

r(s)  det F
Eq. 31 provides a link to the classical design techniques since

it is equivalent to

G(s)

35) " 1760 Hoq(8)

where

€(s) is the open-loop transfer function,



36)  6(s) = %%;f;% =c' (s I-a1",

and Heq(33 is an equivalent feedback element,

_bfs1-a"h
s 1-a™

; é)
From the abowe equations it can be observed

a) The zeros of the open loop are also the zeros of the closed
loop tramsfer function,

b) The locativnm of the zeros in the closed loop transfer function
is independent of the feedback coefficients and can oniy be altered by
using a series compensator, or can be cancelled by a corresponding pole in
y(s)/r(s).

¢) The poles of Heq(s) are the zeros of G(s).

d) The closed-loop response or the desired system dynamics is
a function of the feedback coefficients.

The state~variable feedback design technique consists of:

a) Specifying the desired dynamics of the system in terms of the
closed-lowp transfer function.

b) Formulating the closed-loop response in terms of h, (Eq. 31),
with b unspecified.

¢) Solving a set of gimultaneous linear algebraic equations in

h which are :

enerated by equating coefficients of powers of s of the
denominator of Bg. 31 to coefficients of like powers of the desired
closed~loop tvansfier function, the resulting values of h are the values

of the feedback coefficients which will realize the desired system dynamics.
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A digitsl computer program, based on the matrix formulation has
been dev&lawﬁd3 for the design and analysis of state variable feedback
systems, This program 18 designed to reduce the computational load

which, althow b

riiec,; becomes quite tedious for third-order systems
or greater.
The program operates in the following manner:
a) Supplying the equations of the plant to be controlled in
matrix notation (A, Q?, g?), the open-loop transfer function,

Eq. 36

-’ s1-al"p
is c#lculated.

b) Knowing that the zeros of the open-loop are also the zeros of
the closed-loop, unwanted zeros are removed by placing a corres-
ponding pole in the desired transfer function which has already
been specified.

¢) Adding the poles of the desired transfer function to the

prewdous input information, the program performs the calcula-

tions indicated in b) and c) on page?9.

This program can also obtain root locus information and perform
feedback sensitivity studies. Because the program is based on a matrix
approach, it maintains its generality. Another advantage of using
the matrix apprageh is that all the transfer functions from the internal
state variables to the input can be found by assigning appropriate values

to the elements in the output vector c.




CHAPTER IV

STATE VARIABLE PEEDBACK DESIGN OF REACTOR CONTROL SYSTEM

In order to illustrate the state variable feedback design technique,
a control system is desigmed for a linearized coupled-core reactor.
Performing the indicated subscripted operations on Egs. 5-to 8

and letting

6nl = xl 6n2 =X, Gpe = x7
6cl = X, 6c2 = X
6T1 = X4 6T2 = X

the equations describing the linearized coupled nuclear system with

controller are written as

° {D+8) 710 . D "10
38) Xy - ﬁl X + Alxz - Ql Xq + 22 X, + 21 x7

o _ B _

1 1 172
40y x, = K
) Xy =KX - agx,
a.n
: @ ! D+ 8 2720
41) x,w'l%rx— X, + A, X, - X
o B
42) X = zz X, - Azxs
o § _
43) X sz4 a,X,
B
4d) %, = xg
o
45) =, = =32 x_ - 8 x, + 32 u.

*8 7 8
It is noted from the equations above that control is accomplished by

perturbing gore 1.

11




Egs. 38 through 45 are put in the form of Eq. 25 where

12

ey

. n
_ gn»;e ) . mw D/t, 0 0 19,
1 1 1
B/2, A 0 0 0o 0 0 o0
K, 0 ay 0 0o 0 0 0
‘ %120
46) D/2 0 o -G, A= o
1 22 2 22
A= ]
0 0 0 8/22' Az 0 0 0
0 0 a K2 0 a, 0 0
g 0 0 0 0o 0 0 1
i
47) b =10 __0_0 0 0 O O 32

Since the total incremental power is the

interest, Eq. 26 becomes

output variable of

T,
48) y = ¢ x = x; + %,
where
T - 2 !
49) e =1 0 0D 1 0 0 0 0
e feedback vector is given by
50) hz h3 h4 h5 h6 h7 h81

If the cores are identical and operating at the same steady

state power level, then the parameters in core 1 (subscript 1) are equal

to the ¢orresponding parameters in core 2 (subscript 2).

Assuming identical

cores, conpider a system having the following parameters:



=]
8

0 320 megawatts;

fesd
|

0.0064;
= 3,2 x %9"5 secaids

=
i

A

H

0.1 secﬁ@dsﬁl;

Using these values, Eq. 46 becomes

-220 .1 ~80 20
200 -1 0 0
1 0 -1 0
20 0 0 -220
49) 0 0 0 200
0 0 0 1
_A‘m
0 0 0 0
0 0 0 0

F=1[SL-A-bhl,

can be formulated;

-1 80
(s+.1) 0
] 0 (s+1)
0 0
50)@ o 0 0
0 0 0
yf 0 0 0
| ~32h, -32h, -3%h,

D = 0.00064
°
k= 1.0 Megawait—sec
a=1.,0 sec~l
o = 0.8 x 107°/°R
0 0 lO7 —_;
0 0 0 0
0 0 0 0
.1 -80 O 0
-1 0 0 0
0 -1 0 0
0 0 0 1
0 0 =32 -8
-20 0 0 —107 0
0 0 0 0 0
0 0 0 0 0
(s+220) -.1 80 0 0
-200 (s+.1) 0O 0 0
-1 0 (s+l) 0 0
0 0 0 8 -1
—32h4 --32h5 —32h6 —32h7(s+8—32h8]

13
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Eq. 34, the closed-loop system transfer function specified in

terms of h, now becomes

The only limitation of this design technique, aside from the usual
problem of physical realization, is that the pole-zero excess of the
desired system cannot be less than that of the uncontrolled system. The
coupled-core reactor has 5 zeros and 8 poles in the open-~loop system;
therefore, any synthesized gystem must have a pole-zero excess of at
least 3.

In specifying the performance of the reactor control system, the
following characteristics were considered:

a) a stable translent and steady-state response,

b) a short settling time; that is, the time required for the
oscillation to die down’to the specified absolute percentage
of the final value and thereafter remain less than this value,

c) good steady-state semsitivity; that is, defined limits within
whigh: the control system will permit the reactor or its
companents to drift before corrective action occurs,

d) a fast response, and

e) - the maximum amount of overshoot in the power level should
‘lagt for only a maximum presecribed time.
Considering these characteristics, essentially second-order

dynamies with 8 damping ratio of .707 and a fast response time was speci-

fied by placing a pair of dominant poles at s = .10 + j 10 and another pole
further out at 8 #-200., Because of its location, the pole at ~200 has

little effect on the system dynamics. However, it is necessary to satisfy
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the pole~zero excess condition, The damping ratio of .707 provides a

step response wi 1e vwershoot and a very short settling time.

The systs urther constrained by specifying a zero velocity

h zero velocity error is one whose response

v ramp Input in the steady-state with no time

lag, This econd g by satigfying the following relationship:4

where
Z denotes summation

PC’Laraﬁﬁﬁﬁ to @loigﬁ loop poles
Zo 1 .refers to glosed loop zeros

Since no zeros were specified in the desired transfer function,

zero velocity error ~f§*bé achieved by either retaining one of the inher-

ent system zero# or by using series compensation, Because series compen-

#se the order of the system, one of the system zeros

From the state variable feedback program, the numerator of the
open~loop transfer function was found to be

32(@,1+F84)
dat T
Retaining the zero at 8 = —.0386 and cancelling the others, the denominator

53) = 3.2 x 105(s+.099) (s+1) (s+.0386) (s+1.313) (s+239. 75)

of the desirved tramsfer function becomes

54) det F = (s+.099)(s+1)(s+l.313)(s+239.75)(s+200)(sz+203+200)

(s+Pg 1)



where PCQL.

ocity error com

52,
From Egs. - he desired system transfer function

becomes
3.2 x 10° (s+.0386)
(s+200)(sz+208+200)(s+PC

33

o )

L.

Substituting the zero and pole locations into Eq. 52 yields
56) PC,L. = .036

Eq. 55 now becomes

3.2 x 10%(s+.0386)

573 14 .
“d (s+.036) (s+200) (s +208+4+200)

The values of h%’s whiech realize the desired system dynamics are

i
h) = -3.3993 x 107> hy = ~4.81369 x 1078
h, = ~4.2877 % 107° h, = +3.05848 x 107
hy = 239 x 107° h, = -3.37513

| h, = -3.39975 x 107 hg = =.375

Using these %@%@és, the control law stated by Eq. 27 becomes

8 5

58) u = r-3.3993 x 10‘5x1-4.2877 x 107"x,+3.0239 x 10 x

3

-3.39975 x 10 °x,—4.81369 x 10 Ox_+3.05848 x 10“5x

4 5

-3.37513 x7—.375 Xg

 gonkrol law is realized by measuring and summing all the

16

i of the pole which satisfies the zero vel-

6

state variabless after each has been multiplied by the appropriate gain

constant.
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So far nothing has been said about the accessibility of the

state wvariables. en assumed that all the state variables are

This is not always the case. TFor instance,

These state variables can be generated

For example, Eq. 39, describing pre-

can be writtén in the frequency domain as

39) xi T oa(e+r)’

The state variable, Ros can Be generated by using the lag network des-
cribed intha 59,

Although the gontrolled variable, the total incremental power,
X1+X4’ is responding In a desired prescribed manner, some of the internal
gtate variables may be behaving in an undesirable fashion. Therefore, it
is necesgary to find the response of all the internal state variables to
an input, r(t). Th@g is easily done by changing the elements in the
output vector, c. The closed-loop response has been determined for the

fig state variables:

followi

60) &ﬁl - 3.2 x 108 (s+.0346) (s+1.34) (8+219,73)
- # (s+.0386) (s+1. 31) (84+200) (s+239. 75) (s2+205+200)
Sey 6.4 x 1070 (s+.0339) (s+1.34) (e4219.73)

¥

(s+.0386) (s+.0996) (s+1.31) (s+200) (8+239. 75) (82+208+200)

3.2 x 10° (e+.0339) (s+1.34) (s4219.73)
(s+.0386) (s+1) (s+1. 31) (s+200) (s+239. 75) (52+208+200)




63)

64)

65)

66)

18

bn, 6.4 x 107 (s+.0872) (s+.986) (s+1.013) (s+1.132)

T (ot.0386) (5+.099) (s+1) (s+1. 313) (5+200) (s+239. 75) (s*+208+200)

°% _ 1.28 x 10M% (s41)

T (or.0386) (el 313) (s4200) (84239, 75) (°+208+200)
9

1

¢ 10° (+.099 + 6.468 x 107°)
96) (s+1. 313) (s4200) (s+239. 75) (s 2+208+200)




'CHAPTER V

THE NONLINEAR PROBLEM

The purpose of this section 1s to determine the range of validity

of the design techmique when the control system that was derived for the
linear model ig applied to the nonlinear coupled-core system.
This is accomplished by selecting various equilibrium power levels and
subjecting them to g range of step inputs of power demand. The system
behavior is studied using a tine response digital program based on the
4th order Runge-Kutta method. &

The equations deseribing the nonlinear coupled-core point

reactor model are

X, X
yoe L a 157
67) Xy 7 *1%3 + . ,

68) x, = By -
2 2 71 27
69) x, = K
) %, Xy = aXg,
') D+ 8) e
L g % T M 7 X%
D 5B, .
71) X, = T &, = Axg,
, s .
72) x, = Kx, » axg,
o
733 Xy = Xg

k]
74)  xg = -32 x, - 8 x5 + 32u,

75) u = ¢ 4 Q? X

19
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where all the symbols are as previously defined except

X, = n

1M % T %7 % Pe
xz e Cl x5 = c2
xgim Tl x6 = T2

These equations are generated by combining Eqs. 1 to 4 (recalling that
Pog = 0 since only one core is being controlled) with the controller
dynamics and the control law derived earlier.

The first equilibriwﬁypower level analyzed is that for which the

control system was designed, namely 320 megawatts, x Using the

10°
same parameter values that were outlined for the linear model, equili-

brium values can be found for the system variables as follows from

Eqs. 67 to 75,

X X
- _D _a _10°70
76) 0= L %40 T *10%0 T Ty
3 - B -
77) O ) Xl& AXZO
78) 0 = KKLO = axg,
=D _ (DHB) _a
79) 0= T xg = T Xy ARy -~y Kug%eg
80) 0 = ¢ %40 AXSO
8l) 0 = Kx40 - 8%
82) 0 = Xg()
83) 0= -32 x,; - 8xg) + 32 uy
v =5 ) -8
84) Uy 1, 3.3993 x 10 X1 4,2877 x 10 Xy +
+ 3.0239 x 107 x,. - 3.39975 x 10 x, . -
»H 30 ~ 3- 40
- 4.81369 x 10°% x_ + 3.05848 x 10 °x. -
TR 50 . X X60
- 3.37513 x_ - .375 x

70 80
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From Eq. 77, it can be seen that

TR 5
85) Kgg = K% R = 6.4 % 10”7 megawatts

Algso, Egq. 78 yields

86) K, =T R R

The relationship of x.,. and Xgo With x, . can be determined from

50 0 40
Eqs. 80 and 81,
8
87). %50 * 3% %40
and
. K
88) ®eo = % *uo

Substituting these relationships into Eq. 79, gives
D - B - oK
89) 0 =T %10~ % *40 ~ ar %40’

Rearranging, Eq. 89 becomes

90) x,,2 + 2B x, -2

%02 T ek %40 " ok *10 " 0

Since %0 is a constant, X,q can be determined as follows:

" _ aD 2 _Q
=, (ZaK J/?2aK ok %10

xﬁﬁ is the :ineremental power in core 2, therefore, %10 cannot be
negative. Sinee all the parameters in Eq. 91 are positive, the correct

relationship for x,, is

40

92) x,. = - (=) + /4£l§2+-~22 X
40 ZmK 20K oK 710

Subzatituting numerical values,

%40 is found to be 124.92 Megawatts.

Now, X, and X catt easlly be determined from Eqs. 87 and 88, These

values are
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Xgy = 249.84 x 103 Megawatts

and
« = 124.92 °R
Xgg 124.92 "R
Eq. 82 tells us that

Xag = 0
From Eq. 76, X2 can be found in terms of the other system variables.
*50
93) X0 = D~D_—+ aXq
10
Singe X100 X300 and X, are %nown, X5, can be evaluated.
3

X909 = 2.95 x 10
All that remains to be done is to determine Ty the initial condition
for the step input wardiable.

From Eq. 83, it is noted that

4 ‘e Ak
94) xyq = my

Since the equilibrium value of all the system variables have been
determined, Eq, 84 yilelds the result
= 084,
T, 54
The other equilibrium power levels examined are 640 Megawatts
and zero powsr (100 watts). The value of the system variables for

equilibrium operation are determined from the same relationships derived

on the preceding pages. Table 1 shows the value of the system variables
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TABLE I. EQUILIBRIUM STATE VARIABLES FOR POWER LEVELS INVESTIGATED

State Variable

%10

where MW denotes megawatts and °R, degrees Rankine.

10”

Linear Design Power

Twice Linear
Design Power

320 MW

6.4 x 10° MW

320 °R
124,92 MW

2.4984 x 10° MW

124,92 °R

2.95 x 107>

0

.054

640 MW

1.28 x 106 MW

640 °R
189.78 MW

3.7956 x lO5 MW

189.78 °R

5.57 x 1072

0

.100



CHAPTER VI

PRIES OF THE LINEAR AND NONLINEAR SYNTHESIZED SYSTEM

In this chapter, the simulation studies of the linear and
nonlinear synthesized system are discussed.

The system to ge controlled consists of two identical reactors,
some finite distance apart, operating at 320 Megawatts. When a step
demand in power is placed in the system the power starts to rise quickly
in core 1. The rate of production of delayed neutrons catches up to the
initial power change and slows it down. Finally, the temperature reac-
tivity feedback levels the power off at a new steady state value. Corres~
pondingly an increase in power level in core 2 is caused by the coupling
between the cores, Fig. 1 shows the incremental power response of the lin-
ear system to a step demand in power. It is exactly the response that
was specified.

Fig. 2 shows the amount of externally induced reactivity, X0
(37¢) that is g@@mired to almost double the initial steady-state power
level and the temperature response of each core in the linear system to
a step demand of power. Fig. 3 represents the short-time temperature
response to a step demand in power. The temperatures are proportional
to their corresponding power levels.

Pig. 4 shows the response of the individual cores, as the cores are
moved together., This corresponds to increasing the coupling coefficient,

D, between the two gores. It can be seen that the power in the controlled

24
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core, core 1, decreases, and the power in the other core increases while
the total response remains the same. Finally, at D = .0384, there is almost

pewer. For coupling coefficients greater than D = ,0384

the power in both cores blowsup. In effect this corresponds to a physical

¢e and indicates that the limits of the

situation where the cores coale

bing the system have been exceeded.

validity of the eguations des

Fig. 5 shows the sensitivity of A, the effective delayed neutron
precursor decay constant, on the overall system response. The dasheé line
represents the desived response. In order to maintain the desired response
A can't be varied more than + 10%.

A root locus plot of the synthesized linear system as a function
of controller gain is given in Fig. 6. It is clear that the system will
not go unstable for amy value of controller gain.

Fig. 7 shows the dependence of the system transfer function on

the equilibrium power level, n From Fig. 7, it can be seen that

0
increases in the steady-state power level, Dos decrease the damping of the
system respomse. The steady-state power level can be raised to approx-
imately 960 Megawatts before the system starts to oscillate and becomes
ungtable. Decreasing ng results in a more heavily damped system response.

Figs 8 shows the response of the linear system to a ramp input.
The power ramp lags the input ramp by approximately 0.16 secs.

Variations 4n the feedback coefficients (h4, hS and h6) associated

with the pos

®r, pregursor concentration, and temperature of the uncontrolled

core respectively, have very little affect on the system dynamics and

neglecting them only slightly changes the system response. This is as
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expected since the state variables they are feeding back are very

small compared to thelr respegtive quantities in the controlled core.

The system response 1s very sensitive to changes in h7 and h8’ corres—

ponding to control reod pesition and velocity respectively, because they

are quite large. The final steady-state power level is affected by
variations in the power feedback coefficients, h1 and h4. The power

level increases for decreasing values of h. This affect is more readily
seen in variations of hl singe the power in core 1 is a lot larger than
the power in the uncontrolled core. The feedback coefficients, h2 and h3,
corresponding to the preecursor concentration and temperature of the
controlled core can be varied + 157 without appreciably changing the
system response,

Fig. 9 shows the response of the non-linear system, operating at
the designed 320 MW, to varilous step demands in power. The desired system
response is obtained for step dem;nds in power up to 35% of the equili-~
brium value. Theve is only a slight change in the system dynamics for
step demands of power up to 50% of the steady-state power level. The
- step respounge for negative inputs is more heavily damped than the

responses for gorresponding positive inputs.

The next equilibrium point examined was 640 MW. Fig. 10 shows
that system rvesponse for step demands in power up to 40% of the equili-
brium show only a slight change in the system dynamics. The system
oscillates sooner than for the designed 320 MW operating level. Once
again, the vesponses to negative inputs are more heavily damped than for

thelr corresponding positive inputs,
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The final steady state level studied was that of zero power. For
this condition the magnitude of all the state variable should be zero.
However, since thete i s equilibrium point at the origin, a small finite
power {100 watts) was assumed in order to get a response from the system.
Fig. 11 shows that the larger the step demands in power, the less damped
the system becomes. Fay step demands in power larger than the ones shown,
the response becomes eseillatory.

The sensitivity of the system response to parameter variations was

examined at each of the non-zero steady state power levels. The results

were essentially identical with those reported for the linearized system.
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CHAPTER VII

CONCLUSIONS

The simulation studies show that:

a) An effective contrel system for a coupled-core reactor can
be designed using state variable feedback techniques;

b) The desired system dynamics, specified in terms of a closed-
loop transfer function, are exactly realized by feeding back all the
state variables through constant gain elements (feedback coefficients).

As a consequence, almost any desired response can be imposed upon the sys-
tem merely by determining the proper feedback coefficients;

¢) Inaccessible state variables are not a problem. They can
be generated from their describing equations and fed back through
frequency dependent elements;

d) Comventional control specifications such as zero velocity
error, damping ratie, overshoot, etc., can be employed in the design
method. They can be realized with or without series compensation;

e) The control law derived for the linear system is applicable
to the non-linear problem. The steady-state power level can almost be
tripled before the system starts to oscillate;

f) The effective delayed neutron precursor decay constant, A,
cannot be varied more than + 10% without distorting the desired response.

Finally, being formulated in matrix notation, the method maintains

its generality. Another advantage of using the matrix approach is that all

39
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by changing elements in the output vector c. This is very important e
because one cannot design an effegitive control system without knowing

how all the system variables are performing.




1)

2)

3)

4)
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